GCN2 kinase activation by ATP-competitive kinase inhibitors

Mellinghoff I, Tang CP, Clark O, Ferrarone J, Campos C, Lalani AS, Chodera JD, Intlekofer AM, and Elemento O
Nature Chemical Biology}, 18:207, 2022 [DOI]

We describe paradoxical activation of GCN2 kinase activity by the kinase inhibitor neratinib, and propose a model for how inhibitor-induced dimerization might cause this unusual activity.

Quantum chemistry common driver and databases (QCDB) and quantum chemistry engine (QCEngine): Automation and interoperability among computational chemistry programs

Smith DGA, Lolinco AT, Glick ZL, Lee J, Alenaizan A, Barnes TA, Borca CH, Di Remigio R, Dotson DL, Ehlert S, Heide AG, Herbst MF, Hermann J, Hicks CB, Horton JT, Hurtado AG, Kraus P, Kruse P, Lee SJR, Misiewicz JP, Naden LN, Ramezanghorbani F, Scheurer M, Shriber JB, Simmonett AC, Steinmetzer J, Wagner JR, Ward L, Welborn M, Altarawy D, Anwar J, Chodera JD, Dreuw A, Kulik HJ, Liu F, Martinez TJ, Matthews DA, Schaefer III HF, Sponer J, Turney JM, Wang L-P, De Silva N, King RA, Stanton JF, Gordon MS, Windus TL, Sherrill CD, Burns LA
Journal of Chemical Physics} 155:204801, 2021 [DOI]

We describe a new community-wide approach to interoperability for quantum chemistry packages that will enable large-scale applications such as next-generation machine learning for chemistry and automated force field construction for drug discovery.

Teaching free energy calculations to learn from experimental data

Marcus Wieder, Josh Fass, and John Chodera
[bioRxiv] [code] [data]

We show, for the first time, how alchemical free energy calculations can be used to not only compute free energy differences between small molecules involving covalent bond rearrangements in systems treated entirely with quantum machine learning potentials, but that these calculations have the capacity to learn to efficiently generalize from conditioning on experimental free energy data.

The Open Force Field Evaluator: An automated, efficient, and scalable framework for the estimation of physical properties from molecular simulation

Simon Boothroyd, Lee-Ping Wang, David L. Mobley, John D. Chodera, and Michael R. Shirts

Preprint ahead of submission: [ChemRxiv]

We describe a new software framework for automated evaluation of physical properties for the benchmarking and optimization of small molecule force fields according to best practices.

Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape

Tyler N Starr, Nadine Czudnochowski, Fabrizia Zatta, Young-Jun Park, Zhuoming Liu, Amin Addetia, Dora Pinto, Martina Beltramello, Patrick Hernandez, Allison J Greaney, Roberta Marzi, William G Glass, Ivy Zhang, Adam S Dingens, John E Bowen, Jason A Wojcechowskyj, Anna De Marco, Laura E Rosen, Jiayi Zhou, Martin Montiel-Ruiz, Hannah Kaiser, Heather Tucker, Michael P Housley, Julia Di Iulio, Gloria Lombardo, Maria Agostini, Nicole Sprugasci, Katja Culap, Stefano Jaconi, Marcel Meury, Exequiel Dellota, Elisabetta Cameroni, Tristan I Croll, Jay C Nix, Colin Havenar-Daughton, Amalio Telenti, Florian A Lempp, Matteo Samuele Pizzuto, John D Chodera, Christy M Hebner, Sean PJ Whelan, Herbert W Virgin, David Veesler, Davide Corti, Jesse D Bloom, Gyorgy Snell
Nature, in press. [DOI] [bioRxiv] [GitHub]

We comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor binding domain, including the parent antibody of the recently approved Vir antibody drug (Sotrovimab), illuminating escape mutations with structural and dynamic insight into their mechanism of action.

Mutation in Abl kinase with altered drug binding kinetics indicates a novel mechanism of imatinib resistance

Agatha Lyczek, Benedict Tilman Berger, Aziz M Rangwala, YiTing Paung, Jessica Tom, Hannah Philipose, Jiaye Guo, Steven K Albanese, Matthew B Robers, Stefan Knapp, John D Chodera, Markus A Seeliger
Preprint ahead of publication: [bioRxiv]

Here, we characterize the biophysical mechanisms underlying mutants of Abl kinase associated with clinical drug resistance to targeted cancer therapies. We uncover a surprising novel mechanism of mutational resistance to kinase inhibitor therapy in which the off-rate for inhibitor unbinding is increased without affecting inhibitor affinity.

A white-knuckle ride of open COVID drug discovery

Frank von Delft, Mark Calmiano, John Chodera, Ed Griffen, Alpha Lee, Nir London, Tatiana Matviuk, Ben Perry, Matt Robinson, and Annette von Delft.
Nature 594:330, 2021.
[DOI] [PDF]

The COVID Moonshot is an open science effort to discover a direct-acting SARS-CoV-2 oral antiviral. Here, we share lessons from this effort, including the missed opportunity to develop a phase 2 ready drug more than a decade ago that could have halted the COVID-19 pandemic in its tracks.

Best practices for constructing, preparing, and evaluating protein-ligand binding affinity benchmarks

David F Hahn, Christopher I Bayly, Hannah E Bruce Macdonald, John D Chodera, Antonia SJS Mey, David L Mobley, Laura Perez Benito, Christina EM Schindler, Gary Tresadern, Gregory L Warren
Preprint ahead of publication: [arXiv] [GitHub]

This living best practices paper for the Living Journal of Computational Molecular Sciences describes the current community consensus in how to curate experimental benchmark data for assessing predictive affinity models for drug discovery, how to prepare these systems for affinity calculations, and how to assess the results to compare performance.

SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome

Maxwell I. Zimmerman, Justin R. Porter, Michael D. Ward, Sukrit Singh, Neha Vithani, Artur Meller, Upasana L. Mallimadugula, Catherine E. Kuhn, Jonathan H. Borowsky,  Rafal P. Wiewiora, Matthew F. D. Hurley, Aoife M Harbison, Carl A Fogarty, Joseph E. Coffland, Elisa Fadda, Vincent A. Voelz, John D. Chodera, Gregory R. Bowman.
Nature Chemistry 13:651, 2021. [DOI] [bioRxiv] [data] [FAH/MolSSI COVID-19 data sharing site]

To accelerate a multitude of drug development activities to combat the global threat posed by COVID-19, over a million citizen scientists have banded together through the Folding@home distributed computing project to create the world’s first Exascale computer and simulate protein dynamics. An unprecedented 0.1 seconds of simulation of the viral proteome reveal how the spike complex uses conformational masking to evade an immune response, conformational changes implicated in the function of other viral proteins, and cryptic pockets that are absent in experimental structures. These structures and mechanistic insights present new targets for the design of therapeutics..

Bayesian inference-driven model parameterization and model selection for 2CLJQ fluid models

Owen C Madin, Simon Boothroyd, Richard A Messerly, John D Chodera, Josh Fass, and Michael R Shirts
Preprint ahead of publication: [arXiv]

Here, we show how Bayesian inference can be used to automatically perform model selection and fit parameters for a molecular mechanics force field.

Discovery of SARS-CoV-2 main protease inhibitors using a synthesis-directed de novo design model

Aaron Morris, William McCorkindale, the COVID Moonshot Consortium, Nir Drayman, John D Chodera, Savaş Tay, Nir London, and Alpha A. Lee.
Chemical Communications 57:5909, 2021
[DOI]

We show how a machine learning models of ligand affinity can be coupled to synthetic enumeration models to rapidly generate potent inhibitors of the SARS-CoV-2 main viral protease.

What Markov State Models can and cannot do: Correlation versus path-based observables in protein-folding models

Ernesto Suárez, Rafal P Wiewiora, Chris Wehmeyer, Frank Noé, John D Chodera, Daniel M Zuckerman
Journal of Chemical Theory and Computation 17:3119, 2021
[DOI] [PDF] [bioRxiv] [GitHub]

Markov state models are now well-established for describing the long-time conformational dynamics of proteins. Here, we take a critical look of what properties can reliably be extracted from these coarse-grained models.

Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity

Emma C. Thompson, Laura E. Rosen, James G. Shepherd, Robert Spreafico, Ana da Silva Filipe, Jason A. Wojcechowskyj, Chris Davis, Luca Piccoli, David J. Pascall, Josh Dillen, Spyros Lytras, Nadine Czudnochowski, Rajiv Shah, Marcel Meury, Natasha Jesudason, Anna De Marco, Kathy Li, Jessia Bassi, Aine O’Toole, Dora Pinto, Rachel M. Colqohoun, Katja Culap, Ben Jackson, Fabrizia Zatta, Andrew Rambaut, Stefano Jaconi, Vattipali B. Sreenu, Jay Nix, Ivy Zhang, Ruth F. Jarrett, William G. Glass, Martina Beltramello, Kyriaki Nomikou, Matteo Pizzuto, Lily Tong, Elisabetta Cameroni, Tristan I. Croll, Natasha Johnson, Julia Di Iulio, Arthur Wickenhagen, Alessandro Ceschi, Aoife M. Harbison, Daniel Mair, Paolo Ferrari, Katherine Smollett, Federica Sallusto, Stephen Carmichael, Christian Garzoni, Jenna Nichols, Massimo Galli, Joseph Hughes, Agostino Riva, Antonia Ho, Marco Schiuma, Malcolm G. Semple, Peter J. M. Openshaw, Elisa Fadda, J. Kenneth Baillie, John D. Chodera, The ISARIC4C Investigators, the COVID-19 Genomics UK (COG-UK) consortium, Suzannah J. Rihn, Samantha J. Lycett, Herbert W. Virgin, Amalio Telenti, Davide Corti, David L. Robertson, and Gyorgy Snell.

Cell 184:1171, 2022. [DOI] [PDF] [bioRxiv] [Supplementary Info] [Folding@home data]

New mutations that enhance the affinity of SARS-CoV-2 spike protein for human ACE2—and potentially pose threats to antibody-based therapeutics and vaccines for COVID-19—are already emerging in the wild. We characterize and describe sentinel mutations of SARS-CoV-2 in the wild that herald challenges for combatting COVID-19, and use simulations of the RBD-ACE2 interface on Folding@home to biophysically characterize why these mutations can lead to enhanced affinity.

Overview of the SAMPL6 pKa challenge: evaluating small molecule microscopic and macroscopic pKa predictions

Mehtap Işık, Ariën S Rustenburg, Andrea Rizzi, Marilyn R Gunner, David L Mobley, John D Chodera
Journal of Computer-Aided Molecular Design 35:131, 2021
[DOI] [bioRxiv] [GitHub] [manuscript and figure sources]

The SAMPL6 pKa challenge assessed the ability of the computational chemistry community to predict macroscopic and microscopic pKas for a set of druglike molecules resembling kinase inhibitors. This paper reports on the overall performance and lessons learned, including the surprising finding that many tools predict reasonably accurate macroscopic pKas corresponding to the wrong microscopic protonation sites.

Development and benchmarking of Open Force Field v1.0.0, the Parsley small molecule force field

Yudong Qiu, Daniel Smith, Simon Boothroyd, Hyesu Jang, Jeffrey Wagner, Caitlin C Bannan, Trevor Gokey, Victoria T Lim, Chaya Stern, Andrea Rizzi, Xavier Lucas, Bryon Tjanaka, Michael R Shirts, Michael Gilson, John D. Chodera, Christopher I Bayly, David Mobley, Lee-Ping Wang
Preprint ahead of publication: [chemRxiv] [force fields] [Open Force Field Initiative]

We present a new, modern small molecule force field for molecular design from the Open Force Field Initiative, a large industry-academic collaboration that focuses on open science, open data, and modern open source infrastructure.

Fitting quantum machine learning potentials to experimental free energy data: Predicting tautomer ratios in solution

Marcus Wieder, Josh Fass, and John D. Chodera
Chemical Science, in press [bioRxiv] [code]

We demonstrate, for the first time, how alchemical free energy calculations can performed on systems simulated entirely with quantum machine learning potentials and how these potentials can be retrained on experimental free energies to generalize to new molecules from limited training data. We apply this approach to a difficult problem in small molecule drug discovery: Predicting accurate tautomer ratios in solution.

Best practices for alchemical free energy calculations

Mey ASJS, Allen B, Bruce Macdonald HE, Chodera JD, Kuhn M, Michel J, Mobley DL, Naden LN, Prasad S, Rizzi A, Scheen J, Shirts MR, Tresadern G, and Xu H.
Living Journal of Computational Molecular Sciences 2022 [DOI]
[arXiv] [GitHub]

This living review for the Living Journal of Computational Molecular Sciences (LiveCoMS) covers the essential considerations for running alchemical free energy calculations for rational molecular design for drug discovery.

Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning / molecular mechanics potentials

Dominic A. Rufa, Hannah E. Bruce Macdonald, Josh Fass, Marcus Wieder, Patrick B. Grinaway, Adrian E. Roitberg, Olexandr Isayev, and John D. Chodera.
Preprint ahead of submission.
[bioRxiv] [GitHub]

In this first use of hybrid machine learning / molecular mechanics (ML/MM) potentials for alchemical free energy calculations, we demonstrate how the improved modeling of intramolecular ligand energetics offered by the quantum machine learning potential ANI-2x can significantly improve the accuracy in predicting kinase inhibitor binding free energy by reducing the error from 0.97~kcal/mol to 0.47~kcal/mol, which could drastically reduce the number of compounds that must be synthesized in lead optimization campaigns for minimal additional computational cost.

Crowdsourcing drug discovery for pandemics

John D. Chodera, Alpha A. Lee, Nir London, and Frank von Delft.
Nature Chemistry 12:581, 2020
[DOI] [PDF] [COVID Moonshot] [GoFundMe]

The COVID-19 pandemic has left the world scrambling to find effective therapies to stem the tidal wave of death and put an end to the worldwide disruption caused by SARS-CoV-2. In this Correspondence, we argue for the need for a new open, collaborative drug discovery model (exemplified by our COVID Moonshot collaboration) that breaks free of the limitations of industry-led competitive drug discovery efforts that necessarily restrict information flow and hinder rapid progress by prioritizing profits and patent protection over human lives.