Folding@home 20th Anniversary Livestream!

Folding@home is twenty years old this year! It’s been a wild ride: Probing the fundamental nature of protein folding, organically growing the world’s first exaflops computing resource, and tackling COVID-19 drug discovery with free energy calculations at unprecedented scale. The project has produced hundreds of peer-reviewed scientific papers and enormous public datasets for researchers to mine.

We were lucky to celebrate some highlights from the past twenty years with Folding@home founder Vijay Pande, Greg Bowman (the current Director of the Folding@home Consortium), Sukrit Singh, ReadyPlayerEmma, and COVID Moonshot guests Alpha Lee and Frank von Delft who joined me to talk about the amazing progress the Moonshot has made over the past few months.

If you missed the livestream, you can watch the recorded stream here on twitch.

New Nature Chemical Biology paper on Aurora A kinase, a potential melanoma target

In collaboration with the Nicholas Levinson lab at the University of Minnesota, we have just published a paper in Nature Chemical Biology using experiment and simulation to probe the mechanism of allosteric activation of Aurora A kinase (AurA). AurA is found to be hyperphosphorylated in approximately 10% of melanoma patients due to mutations that deactivate the protein phosphatase PP6, leading to defects in chromosome segregation and genomic stability. 

AurA kinase plays two distinct roles in mitosis, with a centrosomal pool of kinase activated by phosphorylation similarly to other kinases, but a separate pool controlled by a more exotic mechanism of binding to the spindle-associated protein Tpx2. Using an aggregate of several microseconds of data generated on Folding@home to study wild-type AurA and some engineered mutants, we helped the Levinson lab puzzle out a key role of highly stable waters localized in the active site that mediate allosteric communication in the Tpx2-mediated activation of AurA.

Soreen Cyphers, Emily F Ruff, Julie M Behr, John D Chodera, and Nicholas M Levinson.
A water-mediated allosteric network governs activation of Aurora kinase A
Nature Chemical Biology, in press. [DOI] [GitHub]

We have made all the explicit-solvent Folding@home simulation data and analysis scripts used in this paper available for download:
http://github.com/choderalab/AurA-materials

The trajectory data itself is too large to share via GitHub, so we make it available via the Open Science Framework.

Help us reach one million folders on Folding@home!

Our lab is a core member of the Folding@home Consortium, a research network of 11 laboratories around the world that use Folding@home to study the molecular mechanisms underlying cancer and other diseases and identify new routes toward therapies. Together, we are aiming to recruit one million volunteers donating compute cycles to help us! 

Please join us, especially if you have a GPU: Folding@home can harness the power of your GPU
It costs nothing (other than your electrical bill) and provides a way to donate your idle computer cycles to biomedical research.

Download Folding@home now

 

Other useful links: